
Embedded Electronics Page 1 8/7/2007

<dalf1_i2c2.doc>

 DALF – 1; Rev F Motor Control Board

I2C2 Interface

Revision 0.05

June 28, 2007

Embedded Electronics Page 2 8/7/2007

Table of Contents

WARRANTY...2

INTRODUCTION ..3

PHYSICAL LAYER ..3

NETWORKING...4

PACKET LAYER..4

TRANSACTION LAYER ..5

ERROR HANDLING...6

TRANSPORT LAYER ..7

TIPS FOR DEVELOPING AN I2C2 MASTER ...9

CMD INTERFACE TIMEOUT FEATURE ..10

ERROR LIST ..11

Warranty
The software libraries and tools are provided "as is" without warranty. The entire risk for the
results and performance of these libraries and tools is assumed by the purchaser. Embedded
Electronics LLC does not warrant, guarantee or make any representation regarding the use of
this product. No other warranties are made, expressly or implied, including, but not limited to, the
implied warranties of merchantability and suitability of products for a particular purpose. In no
event will Embedded Electronics be held liable for additional damages, including lost profits, lost
savings or other incidental or consequential damages arising from the use or inability to use
Embedded Electronics LLC products.

Disclaimers
Embedded Electronics LLC reserves the right to make changes without notice to this product.
Changes made to improve reliability, performance, capabilities, design or ease of use, or to
reduce size or cost could effect documentation, hardware, and firmware. Any Embedded
Electronics LLC product may not be used as components in life support devices of any
description.

Copyright

Copyright 2006 Embedded Electronics, LLC.

Software License

The <main.c> and <dalf.lib> files provided on the CD for the purpose of encouraging additional
software development are subject to a license agreement explained in the End User License
Agreement (EULA). The EULA file is included on the CD that ships with the product and may
also be read on the EE Website http://www.embeddedelectronics.net/

Embedded Electronics Page 3 8/7/2007

INTRODUCTION
This document describes the Command/Monitor MASTER/SLAVE I2C Communication Interface using

the Dalf1 Secondary I2C Bus.

Updated documentation is maintained at http://www.embeddedelectronics.net/

The I2C bus is a standard designed by Phillips and consists of two signals {SCL, SDA} plus GND. The

Dalf Board brings out the secondary I2C bus signals to screw terminals labeled {SC2, SD2}. In addition,

convenient pin-outs for a 4 pin header {SC2, SD2, VDD, GND} located near the screw terminals facilitates

daisy chaining the bus for networking - see schematic. The firmware configures the Secondary I2C Bus

(I2C2) as an I2C SLAVE in order to accept commands and return data to an off board MASTER that hosts

this bus.

The Dalf Board firmware supports two separate I2C Bus Modules. The Primary I2C Bus is configured as

a MASTER to allow the board firmware to access the on-board I2C Peripherals. The primary I2C Bus

signals are also routed to screw terminals {SC1, SD1}. Do not confuse this connector with the one

mentioned above.

The Dalf Board firmware also supports two other serial Command/Monitor Interfaces which utilize the

RS232 bus and the DSUB9 connector. The Terminal Emulator (TE) Interface is described in the Dalf

Owner’s Manual. The Application Programming Interface (API) is described in the Dalf API Interface

Document. The TE, API, and I2C2 Interfaces are quite similar in terms of functionality, but have different

communication protocols. This document contains a very terse tabular format description of the

commands and expected responses.

This document is dedicated to describing the communication protocol for the I2C2

Interface only. For command content and function, refer to the description of the

commands in the TE section of the Dalf Owner’s Manual.

PHYSICAL LAYER
• Connections: Two wire plus GND: {SC2, SD2, GND} screw terminal connections on the Dalf1

Board. A four terminal header (SC2, GND, VDD, SD2) can be mounted on the provided pads for

easy off board daisy-chaining of the bus.

• Configuration: The Dalf Board is configured as an I2C SLAVE on the I2C2 Bus.

• Addressing: The address of the Dalf Board is configurable (default: 0x60). The address is

maintained in the Dev_DALF parameter in the non-volatile Parameter Block section of the

EEPROM - see Owner’s Manual.

• Hardware Protocol: I2C @ 400 KHz.

• PullUps: The Dalf Board supplies 2.7K pull-up resistors on the SC2 and SD2 lines to Vdd. If the

MASTER also supplies pull-ups, one set should be removed.

Embedded Electronics Page 4 8/7/2007

NETWORKING
The I2C2 Interface supports networking of multiple Dalf1 boards. This feature arises naturally as part of

the nature of the I2C Bus Specification in which device access is specified in an 8-bit “address”. Actually

only the upper 7 bits of the “address” constitute the device address, while Bit0, the R/W# bit, functions as a

control bit. The Dalf Board powers up and configures itself as an I2C SLAVE Device on the secondary

I2C Bus with address = Dev_DALF.

To configure multiple Dalf Boards as SLAVES:

1) Pull-Ups: There should be exactly one set of pull-up resistors on the Secondary I2C Bus. It will

be necessary to remove all but one set of these pull-ups on networked Dalf boards (don’t forget to

check the MASTER).

2) Addressing: Use the TE interface (for example) to record unique values for the Dev_DALF

parameter for each Dalf Board (eg; 0x60, 0x62, 0x64, ..) in the Parameter Block.

3) Connections: Near the screw terminals for the I2C2 connections is a spot for a header that can be

used to easily daisy chain the bus.

PACKET LAYER
The MASTER Device issues Command Packets and receives board Response Packets from the SLAVE

Dalf Board(s) using the message packet format described below. A Packet consists of (N+3) bytes where

N is the number of bytes in the DATA Field. All multi-byte values are transmitted in “little endian” format

in which the low order byte appears first. The maximum packet size occurs as the response to the L

Command which can deliver up to 128 bytes of data, so the maximum packet size is N+3=131.

For Command Packets from the MASTER, the DATA field is used to supply command arguments. The

content and length of the DATA field is command dependent. Some commands require no arguments

hence have N=0 (Pkt size 3).

Every command from the MASTER elicits a response from the Dalf SLAVE board which consists of

either a single byte “Success/Fail” code, or in the case of successful execution of a command which returns

data, a Response Packet in the same format as that of the command. Response Packets use the DATA

field to supply command results and status according to the specific command (See the TE section in the

Owner’s Manual). As with Command Packets, the value of N (hence the size of the packet) is command

dependent. The CMD field echoes the CMD chr transmitted in the Command Packet unless there has been

an error (in which case the first and only char will be the Success/Fail code).

A complete transaction between Master and Slave consists of the Master writing a command packet

to the Slave followed immediately by a Master Read from the Slave (packet or Success/Fail code).

Message Packet Format

FIELD BYTES FORMAT DESCRIPTION

CMD 1 HEX Command Char; “A”-“Z”

N 1 HEX Msg body length; 0<=N<=128

DATA N HEX Msg body; Command Arguments and Response data

CHKSUM 1 HEX Check Sum; Zero sum on N+3 byte packet

Embedded Electronics Page 5 8/7/2007

TRANSACTION LAYER
This document is not the place to discuss I2C protocol or hardware standards. Refer to the I2C

Specification from Phillips if you are unfamiliar with the I2C Bus Standard. Here is an abbreviated

example of a typical Dalf Board transaction using the I2C2 Interface. It does not show all of the ‘1’s and

‘0’s and does not show the clock pulses, but should provide enough detail to be useful:

Example: I2C2 Bus Master Transaction to obtain Motor #1 Position

Here the MASTER has transmits the START bit

(S), the Device Address with WRITE control

(60h), the CMD (“E”=45h), the data length

(N=01h), the data (Mtr# =01h), the CKSUM byte

(B9h) and the STOP bit (P). The SLAVE will

have acknowledged each byte on the SCLK pulse

following the byte.

MASTER transmits START, Device

Address with READ control (61h), and

receives from the SLAVE: CMD=45h,

N=03h, Mtr Position=003027h, and

CKSUM=61h. The MASTER asserts

STOP. For each byte received (except

the last), the MASTER acknowledges

receipt on the next SCLK pulse. The last

byte (CKSUM) must be “negatively

acknowledged” to let the SLAVE know

that transmission is ending.

The Dalf SLAVE employs an interrupt driven receive interface using the PIC MSSP2 Module. If the

MASTER erroneously requests data (MASTER READ) that the SLAVE doesn't have (eg; a Master Read

Operation without a preceding Master Write Operation), the result will be that the slave holds the SCLK

line low (clock stretching) for a period of time until timeout. After timeout, the SLAVE will load the

output buffer SSP2BUF with the timeout error code and release the SCLK line, delivering the error byte to

the MASTER. In this way the bus remains functional, and the MASTER can detect the timeout condition

(bogus CMD byte). The period for the timeout is configurable with the RX1TO parameter in the Parameter

Block - See the Dalf Owner's Manual.

Embedded Electronics Page 6 8/7/2007

ERROR HANDLING
If the first byte of the Slave Response is not a CMD character ‘A’-‘Z’, it is the success/fail code and this is

the only byte in the response. In this case (as in general for the last byte received by the Master), it must be

negatively acknowledged. If the byte has a value equal to chr_OK, then it simply indicates that the

command was successful and there is no data to return. Anything else is an error code (see the Error List).

I2C MASTER (Host) RULES:

1. The host must initiate a READ Operation immediately following every WRITE.

2. The last byte of the response packet must be “negatively acknowledged” by the MASTER as

defined by the I2C Bus Standard. In the special case where an error has occurred during command

execution, or the particular command doesn’t return data, the last byte will be the only byte. In the

cases where data is returned, the last byte will be the CKSUM byte in the N+3 position of the

packet. In this case, there are 2 approaches to determine which byte is the last (CKSUM byte):

The first approach would use a “lookup table” to let the MASTER know the value of “N” for

every command response. The second approach determines “N” by reading the value of the 2
nd

byte in the Response Packet (see the sample code).

3. The Dalf Board firmware employs clock stretching. This feature of the I2C Specification permits

a transmitting device to hold the SCL line low until the data is ready for transmission. This has

implications for the Master if a “bit-bang” interface is used (See the Tips Section of this

document).

4. The host should wait a reasonable period between sending successive commands. While not a

must, this allows sufficient execution time for other board processes to proceed without frequent

I2C interrupts. The determination of “reasonable” depends on board activity.

5. The host must wait for READ and WRITE transactions to complete (or timeout) before initiating

a new transaction.

Embedded Electronics Page 7 8/7/2007

TRANSPORT LAYER

Command Definitions (from Host):

CMD N DATA DESCRIPTION

A 1 fPWM (0x00 - 0x18) Set PWM Frequency by table index

B 2 Fan#(1,2), ON/OFF#(0,1) Fan On/Off control

C 1 Adc Channel (0-6) Get A/D Reading

C 0 Get A/D Reading (all)

D 3 HH(0-23), MM(0-60), SS(0-60) Set RTC

D 0 Get RTC

E 1 Mtr# Get Mtr Position

E 0 Get Mtr Position (both)

F 4 Mtr#, Encoder[0 1 2] Set Encoder

F 1 Mtr# Set Encoder to Zero

I 0 Reset

J 3 IOEXP#(1,2), Reg#, byte IOEXP Write byte

K 2 IOEXP#(1,2), Reg# IOEXP Read byte

L 4 MemType, AdrsLo, AdrsHi, BlkLen Memory Block Read (3 mem types)

M 3 PotDevice#(1,2), Reg#, byte Digital Pot - Write Register

N 1 Channel# (0x01 - 0x03) Get specified R/C pulse width

N 0 Get All R/C pulse widths

O 1 Mtr# Stop specified motor

O 0 Stop both motors

P 7 Mtr#, Kp[0 1], Ki[0 1], Kd[0 1] Set PID parms Kp, Ki, Kd

P 1 Mtr# Get PID settings

Q 6 Mtr#, Tgt[0 1 2], Limit[0 1] PID Step Response

Q 4 Mtr#, Tgt[0 1 2] PID ; Default Limit

R 3 MemType, AdrsLo, AdrsHi Read Memory Byte (3 memory types)

S 6 Mtr#, Dir, Vm[0 1], Acc[0 1] Move; ConstantV, Closed Loop

S 4 Mtr#, Dir, Vm[0 1] Move; Default Acc

S 2 Mtr#, Dir Move; Default Vm, Acc

T 1 Mtr# Trigger move (closed loop)

T 0 Trigger move (closed loop; both)

U 1 Mtr# Get mtr status

U 0 Get mtr status (both)

V 1 Mtr# Get mtr velocity

V 0 Get mtr velocity (both)

W 4 MemType, AdrsLo, AdrsHi, byte Write Memory Byte (3 memory types)

X 4 Mtr#, DIR, Speed, tSlew Move (Open Loop)

X 3 Mtr#, DIR, Speed Move Default tSlew

Y 8 Mtr#, Tgt[0 1 2], Vm[0 1], Acc[0 1] Move (Closed Loop)

Y 6 Mtr#, Tgt[0 1 2], Vm[0 1] Move Default Acc

Y 4 Mtr#, Tgt[0 1 2] Move Default Vm, Acc

Z 0 Upload parms to EEPROM

Notes:

1) Mtr#: (1,2)

2) PotDevice#: (1,2); Note 4 pots, 2 per device.

3) Tgt: 24-bit, signed, little endian.

Embedded Electronics Page 8 8/7/2007

4) MemType: 1=RAM, 2=Ext EEPROM (24LC512), 3=Int EEPROM
5) BlkLen: Block Size: 1 <= BlkLen <= 128.

6) Kp,Ki,Kd: 16-bit, unsigned, little endian.

7) Dir: 0=Fwd, 1=Rev

8) Speed: [0 .. 100] Duty Cycle Percentage

9) tSlew (msec): Ramp rate: 1% Duty Cycle every tSlew msec

8) Vm: (ticks/Vsp): Midcourse velocity*256; 16-bit unsigned.

9) Acc: (ticks/Vsp^2: Acceleration*256; 16-bit unsigned.

Response Definitions (from Dalf1 Board):

CMD N DATA DESCRIPTION

C 1 ADC0[i] Specified A/D Reading

C 7 ADC0[0]..ADC0[6] All 7 A/D Readings

D 6 HOURS[0 1], MINS[0 1], SECS[0 1] RTC (Hex)

E 6 E1[0 1 2], E2[0 1 2] Encoder positions

E 3 Ex[0 1 2] Encoder position; x=1,2

K 1 Byte Byte read from IOEXP

L N Byte[0 1 .. n-1]; n=BlkLen<=128 Memory block bytes

N 2 PulseWidth[0 1] R/C pulse width (uS)

N 6 PW1[0 1], PW2[0 1], PW3[0 1] R/C pulse widths (uS)

P 13 KP[0 1], KI[0 1], KD[0 1], VSP, VMIN, VMAX,

MAXERR[0 1], MAXSUM[0 1]

PID settings et. al

Q 24 Err[0 1 2] (times 8) PID Step Response; 8 values of Err

R 1 Byte Byte read from memory

U 6 MtrStatusx MtrStatusx[0..5]; x=1,2

U 12 MtrStatus1[0..5], MtrStatus2[0..5] Both mtr status

V 3 Vx[0 1 2] Mtr velocity (ticks/VSP)

V 6 V1[0 1 2], V2[0 1 2] Mtr velocities (ticks/VSP)

Notes:

1) All multi-byte arguments and returned data are in little endian (low order byte first) format. This is

an I2C2 vs. TE difference.

2) MtrStatusx: MTRx_MODE1, MTRx_MODE2, MTRx_MODE3, Powerx, Mtrx_Flags1,

Mtrx_Flags2; x=1,2. (See owner’s manual for a description of these bytes).

3) Cmd Q is special. Unlike other commands, Cmd Q can elicit a multi-packet response from the

board. Beginning with firmware version 1.60, 8 PID Err values (3 bytes; 2’s complement format) are

returned in each packet for communication efficiency. The response packets are spaced sequentially in

time with an inter-packet gap of 8*VSP msec (see Dalf Owner’s Manual). The I2C Master must wait

until all data has been received before issuing another command. The number of packets returned is

Limit/8 (rounded up to the nearest integer) where “Limit” is the argument to Cmd Q. In the event that

the last packet is a “partial” packet, the remaining Err values in that packet will be zero.

Embedded Electronics Page 9 8/7/2007

TIPS FOR DEVELOPING AN I2C2 MASTER

If you are developing the code for an I2C Master to control a Dalf Board over the I2C2 Interface, I have

some recommendations.

First: Look at the sample code provided on the CD {<test2.asm, test1.c>:

 void MasterI2C2(void) - Command dispatcher.

WriteI2C2_Pkt - Command packet transmittal to the Dalf Board .

ReadI2C2_Pkt - Request a response packet transmittal from the Board.

These routines are provided as guidelines only. They have been used successfully with Dalf-to-Dalf

communication (one board configured as a MASTER and the other in the usual configuration as an I2C

SLAVE). The Write and Read routines are written in PIC Assembler. The MasterI2C2() is a C function

“transaction handler” that dispatches based on the particular command. Even if you are unfamiliar with

PIC Assembler, the comments should provide some useful guidance for your own code development.

Second: Consider designing your I2C MASTER as an interrupt driven system. The sample code

mentioned above is -NOT- interrupt driven which is perfectly ok for normal operation since the Dalf Board

is very responsive. There is one special case that argues for an interrupt driven system. This involves the

response from Cmd_Q - the PID Tuning Command. Unlike other commands, Cmd_Q responds with

multiple packets spaced evenly in time at timing intervals of 8*VSP msec (see Dalf Owner’s Manual).

While the code in ReadI2C2_Pkt can be employed in a loop to successfully read all of these packets, most

of the time spent in the loop will be wasted while waiting for the next packet to arrive. An interrupt driven

I2C Interface for the MASTER would not have this issue.

Third: If you are developing a “bit-bang” interface, be aware that the Dalf SLAVE device employs clock

stretching. The implication for the MASTER code is that it will be necessary to test the SCL line before

transmit of address or data and before clocking in receive data.

Embedded Electronics Page 10 8/7/2007

CMD INTERFACE TIMEOUT FEATURE

Beginning with Firmware Version 1.62 there is support for a timeout feature that detects and responds to a

lack of command activity on any of the 3 serial command interfaces (TE, API, I2C2). The feature is

primarily intended for use with a programmable interface so it is more likely to be of interest for users of

the API or I2C2 interfaces. When enabled, the feature may be used to automatically shutdown motors

when a valid command has not been received on the command interface for a duration of time that is

adjustable.

One application is its use as a safety feature analogous to the “signal loss” detection and response in radio

controlled systems. As long as you keep periodically sending commands at a repeat rate faster than the

timeout period, the motors will continue whatever action they have been commanded to perform. If, for

some reason, the communication channel is broken, the motors will timeout and stop themselves. Notice

that any valid command resets the timeout, not just motor movement commands.

The timeout period in milliseconds is the product of two byte variables CMDSP and CMDTIME stored in

the Parameter Block. Change CMDSP and CMDTIME to set your desired timeout. The units for CMDSP

are msec, and the units for CMDTIME are CMDSP msec. For example, if CMDSP = 20 and CMDTIME =

255, then the timeout period is 5,100 msec or just a bit over 5 seconds. The maximum timeout period is

255*255 = 65,025 msec or about 65 seconds. To enable the feature there is a bit “cmdto” in the

SYSMODE variable in the Parameter Block. By default, the feature is not enabled (cmdto=’0’). To

enable the feature, simply set the bit. You may make changes to the timeout or the enable status of the

feature at runtime by altering the ERAM versions of these variables. See the Owner’s Manual for details

about the location of these variables in the Parameter Block and ERAM.

Under the hood:

A countdown timer Cmdcount is decremented by a 1 msec interrupt service. When Cmdcount becomes

zero, it is re-initialized with the CMDSP value and a service request is generated to be handled within the

main processing loop. The main processing loop responds by decrementing a byte counter CmdTicks.

Assuming the timeout feature has been enabled (“cmdto”=1) and CmdTicks has become zero, it is re-

initialized with the CMDTIME value and one or more of the motors may be shutdown. If instead, during

this timing process a valid command has been received, the value of CmdTicks will have been re-initialized

with the CMDTIME value, thus avoiding timeout.

There are a couple of things to note here:

• CMDSP controls the timing resolution. For example; if CMDSP = 0x14 = 20 msec, then the main

loop will check for timeout every 20 msec. Your actual timeout response could vary by as much

as 20 msec from what you have set up with your choice of CMDSP and CMDTIME.

• Making CMDSP small generates additional overhead in the main loop. If CMDSP = 0x01 for

example then the main loop gets a service request every 1 msec - probably undesirable.

• If a motor is being controlled thru one of the Pot or R/C interfaces it will be unaffected by this

serial timeout feature - even if the feature is enabled.

Embedded Electronics Page 11 8/7/2007

ERROR LIST
The table below shows the list of potential errors associated with the I2C2 Interface. The Host can query

and reset the ErrCode variable using the Read and Write Memory commands. See the “Fixed Address

RAM Values” section in the Dalf Owner’s Manual for the memory location of the ErrCode variable. See

the TE Interface section of the Dalf Owner’s Manual for details of the Read Memory and Write Memory

commands.

ERROR LIST

Err Code Error Description ---------- Example

0x00 No Error

0x01 Parse ------------------------ Unexpected chr in command packet

0x02 Number of arguments----- [CMD,N] not found for command packet

0x03 Parameter (bad value)----- Mtr#=5

0x04 Mode ------------------------ Serial port motor move cmd received, but R/C mode

0x05 Rx1 Framing (hdwr)------- Hardware framing error (baud?)

0x06 Rx1 Overrun (hdwr)------- Hardware overrun

0x07 Buffer Overrun (sftwr)----- Software receive buffer overrun

0x08 Protocol --------------------- Expected chr not received.

0x09 ChkSum --------------------- Mismatch on computed packet checksum

0x0A Timeout --------------------- Timeout waiting on expected packet completion

0x0B Disabled --------------------- Mtr control interface disabled (eg; over current)

0x0C

0xAA Chr_OK

In some cases, multiple error conditions map to the same error codes. For example, there are many

potential protocol violations. This is the same error list used by the API. Some errors may not apply

to the I2C2 Interface.

